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Unsupervised Cross-Corpus Speech Emotion
Recognition Using a Multi-Source Cycle-GAN
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Abstract—Speech emotion recognition (SER) plays a crucial role in understanding user feelings when developing artificial intelligence
services. However, the data mismatch and label distortion between the training (source) set and the testing (target) set significantly
degrade the performances when developing the SER systems. Additionally, most emotion-related speech datasets are highly
contextualized and limited in size. The manual annotation cost is often too high leading to an active investigation of unsupervised
cross-corpus SER techniques. In this paper, we propose a framework in unsupervised cross-corpus emotion recognition using
multi-source corpus in a data augmentation manner. We introduced Corpus-Aware Emotional CycleGAN (CAEmoCyGAN) including a
corpus-aware attention mechanism to aggregate each source datasets to generate the synthetic target sample. We choose the widely
used speech emotion corpora the IEMOCAP and the VAM as sources and the MSP-Podcast as the target. By generating synthetic
target-aware samples to augment source datasets and by directly training on this augmented dataset, our proposed multi-source
target-aware augmentation method outperforms other baseline models in activation and valence classification.

Index Terms—Speech emotion recognition, data augmentation, cross corpus, unsupervised learning, multi-sources attention

✦

1 INTRODUCTION

A S advanced deep learning algorithms and hardware
capacity have developed, artificial intelligence (AI) ser-

vices and products have proliferated in recent years. Speech
emotion recognition (SER) techniques have become more
prevalent and continuously been applied on the real-world
applications, e.g., satisfaction measurement of customer [1],
health care service [2], call centers [3], intelligent vehicle
assistance [4], [5], [6] and human-machine interactions [7],
[8], [9]. These diverse applications are ubiquitous in our
daily life. Hence, developing robust algorithms plays a
critical role to ensure a wide adoption of SER. Most speech
emotion datasets are limited in scales and highly contex-
tualized which is detrimental when training a model to be
robust for cross-corpus scenarios. Applications suffer from
adapting multiple unique training corpora to provide gen-
eral emotion recognition; that is, severe domain mismatch
across different datasets significantly hinders the model’s
generalization performance. To overcome the barrier caused
by the discrepancy between source and target, instead of
labeling an adequate amount of data from the target corpus,
the most practical way is to transfer the knowledge from the
existing labeled source corpus.

For many years, researchers have investigated algo-
rithms including unsupervised domain adaptation (which
learns to mitigate discrepancies by mapping source distri-
bution to target distribution) and domain-invariant learning
for SER (which learns a common representation subspace
for both domains) to map a source corpus to an unlabeled
target database. For domain adaptation, techniques include
a conventional matrix factorization method [10] and an
advanced method [11] where Albanie et al. introducing
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cross-modal distillation network that transfers from video
to audio. In [12], Zong et al. imposed a regularization that
alleviates domain mismatch and proposed domain adaptive
least square regression (DaLSR), which uses both labeled
source data and unlabeled target data as auxiliary data
during training. Latif et al. [13] proposed deep belief net-
works (DBN) formed from a stack of Restricted Boltzmann
Machines (RBMs) to train using a greedy layer-wise schema,
which demonstrates that the model is able to learn discrim-
inative long-range features. For domain-invariant learning,
Zhang utilized different normalization schemes to under-
stand which schema would be better for handling undesir-
able domain-specific factors [14], and Shuller in [15] broadly
explored the effect of different normalizations among six
standard SER databases and discussed the variances and the
strategies in this field. Huang explored a common feature
space and domain-specific feature space using PCANet [16],
as well as several transfer learning methods [17]. Most
literature addresses the unsupervised cross corpus emotion
recognition in these two major directions, and the current
state-of-the-art method is based on domain adversarial
learning model [18], [19].

In addition to the feature domain mismatch, emotion
labels can also become distorted across different datasets.
Chao et al. [20] pointed out that the distortion in emotion
semantics should be considered even in similar collection
settings, and Wei [21] stated that the subdomains (e.g.,
categories and classes) should be jointly considered while
training a transfer learning model. This type of research
indicates the matching among feature representations does
not intrinsically equal to aligning emotion labels between
corpora. For SER corpora, in particular, the size is limited
and somewhat restricted by the scenarios, which implies
the variability coverage may be insufficient. Under such
circumstances, even when matching the feature represen-
tation of source and target domains, which usually assumes
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that the same category would then be aligned between two
different domains, the model may not be robust and it also
may misalign the emotion labels due to the peculiarity of
the application setting. In fact, most of the prior works
have focused on these two major issues when conducting
unsupervised cross-corpus emotion recognition: 1) feature
distribution mismatch, 2) emotion label distortion.

Aside from these two common issues, additionally, the
known limited scale, and given that emotion manifestation
is complex, it is unclear whether there is enough variability
in the data collected to accomplish SER (even in within-
database recognition), as evident in many recent augmen-
tation works. Recent studies show that SER results would
benefit from increasing the variability within the corpus
using data augmentation methods [22], [23], [24], [25] that
explicitly expand the diversity and increase the number of
training samples. This approach has resulted in superior
performance when compared to other state-of-the-art mod-
els for within-database emotion recognition. Thus, we argue
that to properly handle unsupervised cross-corpus emotion
recognition, one needs to simultaneously consider issues of
domain/label mismatch and limited data variability. To this
end, we have proposed a method in our previous work
[26] that transfers emotional information from source to
target by augmenting source corpus using three types of
synthetic target-aware samples. This model addresses the
former issues simultaneously and achieves state-of-the-art
accuracy.

While a large body in the variants of works has been con-
ducted in this field, most of the methods mentioned above
focus on one-to-one mapping, which selects a specific source
and target and transfers between these two corpora. Thus,
choosing the appropriate pair of corpora that could better
perform one-to-one mapping is significant, e.g., SER per-
formance would be better when transferring the IEMOCAP
to the MSP-IMPROV than when transferring the IEMOCAP
to the CreativeIT due to the similarity in scenario setting.
However, this constraint of choosing the appropriate cor-
pora makes this type of research not scalable and inefficient,
and it would further under-utilize the multiple existing
and available labeled data sources. At the moment, there is
no literature investigating how to handle this many-to-one
unsupervised cross corpus emotion recognition situation.

In fact, we argue that many-to-one mapping is a neces-
sary next step to advance unsupervised cross corpus emo-
tion recognition. Imagine a scenario in reality, e.g., Source-A
is similar to Target-C in content-wise, and Source-B is similar
to Target-C in its environment. When the model directly
trained with either Source-A or Source-B solely would not
be the most suitable source model for the target by itself.
However, if we can make use of Source-B, i.e., merging both
samples with proper weights, the synthesized sample could
better adapt to the target corpus. To this end, in this paper,
we propose a corpus-aware emotional data augmentation
method that handles the usage of multiple-source datasets.
Specifically, we introduce a novel corpus-aware attention
mechanism while training a cycleGAN-based model com-
prising a source-to-target generator, a target-to-source gen-
erator, two source discriminators, and a target discriminator.

The primary contribution of this work beyond our previ-
ous work [26] is that we integrate information from multiple

sources to generate target-aware samples, implementing the
concept of many-to-one mapping for cross-corpus emotion
recognition. Specifically, we integrate the usefulness in the
uniqueness of each source using our proposed corpus-aware
attention mechanism and further conduct comprehensive
analyses to understand our proposed framework and visu-
alize the working mechanism behind our proposed corpus-
aware attention mechanism. The attention mechanism refers
to a target sample as a reference sample and fuses the
samples from two different source datasets to form the
most similar synthetic sample possible. After training the
proposed architecture, we augment the source data by gen-
erating the synthetic target-aware samples. We can then
train a recognizer on this augmented dataset, aggregation
from different unique source datasets, to and directly infer
on the target dataset.

We evaluate on the widely used speech emotion datasets,
the IEMOCAP and the VAM, as our training sources and
the MSP-Podcast as target dataset. The performance of our
proposed method surpasses all the state-of-the-art augmen-
tation strategies. We achieved a 61.64% unweighted average
recall (UAR) for arousal and a 44.62% UAR for valence on
MSP-Podcast in an unsupervised cross corpus SER setting,
which outperforms the state-of-the-art model by 7.09% and
0.69%, respectively, in absolute points. The rest of the pa-
per is organized as follows: section 2 lists and discusses
related works. Our proposed architecture’s components and
objective functions are detailed in section 3. In section 4, we
describe the experimental settings and the compared base-
line models. Then, in section 5, we present the experimental
results and analysis. The conclusion, section 6, summarizes
the paper and the proposed method.

2 RELATED WORKS

Most SER models that are trained on one corpus usually
fail to generalize to other datasets. The mismatch between
speech emotion databases has become one of the biggest
hurdles to generalize SER. Additionally, the complex and
time-consuming nature of speech emotion data collection
has limited the size of most datasets.

Researchers have developed sophisticated algorithms
using various strategies to overcome these situations. Be-
cause of the aforementioned limitations, the recent SER
research focuses on domain adaptation and domain-
invariant learning algorithms that are essentially divided
into three major directions: adversarial learning-based mod-
els, autoencoder-based models, and GAN-based models.

However, unlike the above methodologies, some stud-
ies tackle this problem using data augmentation methods,
which increase the source domain’s variability. In fact, this
method has historically been successfully applied in auto-
matic speech recognition (ASR) tasks [27], [28]. For its use
in domain adaptation scenarios, Ko et al. [29] proposed
simulating the reverberation speech data as a data augmen-
tation way to solve the far-field problem in real-world envi-
ronments. In [30], Hsu augmented the source data using a
variational autoencoder, which learns a latent representation
to transform the source to the target domain. To address the
lack of public child speech data, which is also limited by
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TABLE 1: Database Statistics

Corpus Content Data Setting # of utt Aro. H/M/L(%) Val. H/M/L(%)
IEMOCAP English Audio, Video, MOCAP Scripted & Spontaneous 10039 16.85/72.07/11.08 19.39/48.5/32.11
VAM German Audio, Video, Faces Spontaneous 947 19.53/68.22/12.25 1.06/69.9/29.04
MSP-Podcast(Test) English Audio Spontaneous 9255 32.93/59.91/7.15 20.01/65.59/14.40

the age-dependent condition, Sheng [31] explored a GAN-
based data augmentation method that increases the amount
of data while simultaneously improving the recognition
accuracy. The results demonstrate a large relative word error
rate (WER) reduction of over 20%. Chen [32] proposed
to increase data variation and diversity by combining the
GAN-based model and multi-style training as a data aug-
mentation method for ASR system, and the results show a
35% relative reduction in WER. Recently, a prevalent surge
in the use of GAN-based generative architectures has led
to promising performances on many modeling tasks. The
cycle-consistent GAN [33] has demonstrated outstanding
performance while conducting the image transformation
between the source and target data.

In the following subsections, we elaborate on the four
major methodologies, i.e., adversarial learning-based mod-
els, autoencoder-based models, GAN-based models, and
data augmentation-based models.

2.1 Adversarial Learning-Based Models
Abdelwahab proposed DANN [19], which learns a repre-
sentation between a source and a target using adversarial
invariant learning and has demonstrated promising per-
formance. Then, Gideon [18] integrated the concept of the
WGAN [34] to build ADDoG, in which a critic module is
imposed to force the representation to be similar to the two
distributions. Xiao in [35] also modified the raw DANN
model using a bottleneck fully connected layer to create
the CGDANN, which includes a variational autoencoder-
based feature extractor and considers the reconstruction
loss, emotion loss, and gradient reverse on domain loss
simultaneously.

2.2 Autoencoder-Based Models
Models based on autoencoders were widely used to han-
dle the representation learning tasks. Deng [36] proposed
a denoising autoencoder (DAE) that adapts to the target
domain using a combination of adaptive DAE (A-DAE)
and DAE to learn the general representation of both the
source and target domain. Deng in [37] also proposed an
universum autoencoder-based model to learn the unsuper-
vised representation from labeled data and explored the
prior knowledge from unlabeled data to improve the SER
performance. Neumann [38] improved the cross-corpus SER
accuracy by concatenating the features from RNN-based
autoencoders and CNN-based models. Furthermore, Huang
[16] applied principal components analysis (PCA) filters to
extract the domain-invariant and domain-specific features
that improved the performance of cross-corpus SER.

2.3 GAN-Based Models
Several papers have leveraged the advantages of the GAN-
based model in the main architecture to adapt the represen-
tation from source to target domain. Hoffman et al. [39] pro-
posed the cycle consistent adversarial domain adaptation

(CyCADA), which considers the loss due to discrimination
by the source or target while also taking the main task loss
into account. Using a similar concept, the latest generative
model, CycleEmotionGAN [40] was proposed to mitigate
the mismatch between the source and target domain, and
its structure ensures the emotion semantic consistency as
well. Both architectures consider semantic consistency loss
and aim to align the sentiment content between the source
and target datasets.

2.4 Data Augmentation-Based Models

Leveraging the outstanding image transformation quality
achieved by using cycleGAN, Bao [25] also demonstrated
cycleGAN’s superior performance for SER tasks by synthe-
sizing fake samples for data augmentation. Chatziagapi et
al. [22] proposed to adopt a balancing GAN (BAGAN) that
generates synthetic spectrograms for the minority classes,
then augments the source data to balance the distribution of
each class. In our previous work, we proposed a conditional
cycle emotion GAN (CCEmoGAN) [26] as a target-aware
data augmenter for source datasets to address the cross-
corpus SER modeling by generating fake target samples
with an extra condition vector to control specific emotions.

Data augmentation, as an approach that improves SER
performance, has gained more and more attention in recent
years. Therefore, inspired by the augmentation methods, in
this paper, we apply the generative model to synthesize
target-aware samples; this approach strengthens the source
domain model’s generalization capacity when it is applied
to source data. Refer to [18], the cross-corpus learning
methods can generally be divided into four quadrants:
generative models, discriminative models, domain general-
ization methods, and domain adaptation methods. To better
focus on the generative component, we compare the proper
baseline work to our model in our experiments, which are
described in the later section.

3 RESEARCH METHODOLOGY
3.1 Speech Emotion Corpus

In this work, we considered the distinctiveness of the
available datasets and decided to use the IEMOCAP and
the VAM as our source datasets because they comprise
different languages, scenarios, and collection settings. The
MSP-Podcast was chosen as our target corpus because it
contains real-world speech. In the following subsections, we
elaborate on these three corpora in detail.

3.1.1 Source 1: USC’s IEMOCAP

The Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) dataset [41] is composed of audio and video emotion
clips collected by researchers at the University of Southern
California (USC). It contains a total of approximately 12
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Fig. 1: Overview of the cross-corpus speech emotion recognition (SER) architecture using our proposed CAEmoCyGAN
data augmentation. The training stage is used to train a generator for many-to-one mapping, and the augmentation stage
augments the original source’s data using target-aware samples to train a classifier for the target corpus.

hours of data that have been manually segmented into sen-
tences. There are five dyadic sessions where each consists of
two actors (one male and one female). Each session includes
both spontaneous and scripted dialogue interactions. All
utterances were annotated by at least three raters in terms
of both dimensional attributes (arousal and valence) as well
as categorical emotion labels. In this work, we used a total
of 10039 sentences, and the arousal and valence label were
divided into three classes using the boundary of [1, 2], (2, 4),
[4, 5].

3.1.2 Source 2: Vera am Mittag (VAM)
The VAM corpus [42] is a spontaneous and emotionally-
rich speech database collected from a German talk show.
VAM collected audio data and facial expressions from a
total of 47 speakers. Each broadcast consists of several
multi-party dialogues (two to five people), and 70% of the
speakers collected were 35 years old or younger at the
time of collection. The corpus was extracted from a total of
approximately 12 hours of data. The segmented sentences’
annotations include the attributes of arousal, valence, and
dominance. The annotation values range from -1 to 1. In this
work, we used a total of 947 utterances annotated with both
arousal and valence attributes. In addition, the utterances
were divided into three classes according to the boundary
[-1, -0.33], (-0.33, 0.33), [0.33, 1].

3.1.3 Target: MSP-Podcast
The MSP-Podcast [43] is a spontaneous speech emotion
dataset collected from real-life podcasts. All the utterances
are emotional or neutral speech from online podcasts and
are segmented into durations of 2.75s to 11s. There are 33626
total utterances in the version used in this work and they
are divided into three sets including a training set (19707
utterances), a validation set (4300 utterances), and a testing
set (9255 utterances). Audio segments were annotated by
Amazon Mechanical Turk (AMT) workers, who evaluated
their perceptions of the utterances. At least five annotators
rated the utterances using a scale ranging from 1 to 7, and
the ratings concerned the arousal, valence, and dominance

attributes. In this work, we used only 9255 utterances from
the testing set as our target corpus. We adopted the bound-
ary [1, 3), [3, 5), [5, 7] to split the emotion attributes into
three classes.

3.2 Acoustic Features

We extracted 1582 dimensional functional features from
each utterance using the openSMILE toolkit [44] with the
Emobase config file. It is extracted by computing statistical
functions on low-level descriptors (LLDs) such as pitch,
energy, and Mel-Frequency Cepstrum Coefficients (MFCC).
Moreover, there are two major reasons for using this feature
set. The first one is the dimensionality, to stably converge
the GAN training, neither too large nor few dimensions are
favored in our architecture. Second, previous works have
shown that the Emobase feature set can obtain competitive
results when compared to eGeMAPs feature set [45]. Many
recent works on SER [46], [47] also use this feature set as
inputs. The min-max normalization schema is applied on
a corpus-wise scale to fix the values ranging from -1 to 1,
which improves the efficiency of the cycle-GAN training.

3.3 Corpus-Aware Emotional Cycle-GAN

The overview of our proposed method is presented in Fig. 1,
where all the symbols and abbreviations are made consis-
tent throughout the paper. The architecture is composed
of a modified cycleGAN with a corpus-aware attention
mechanism and the emotion consistency constraint. Con-
ventionally, the cycleGAN is used for a one-to-one mapping
between the source and target corpus.

However, instead of directly conducting one-to-one
mapping, we imposed a corpus-aware attention mechanism
on the middle stage of the cycle-GAN to integrate two latent
representations from the IEMOCAP (S1) and the VAM (S2)
using learnable attention weights (αS). Using the corpus-
aware attention mechanism, we achieved the many-to-one
mapping between multiple sources (IEMOCAP-S1, VAM-
S2) and the target (MSP Podcast-T ). In order to further
preserve the emotion information, we additionally added an
emotion consistency constraint to the reconstructed samples
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from each source so they could be accurately classified. Fi-
nally, the well-trained CAEmoCyGAN was used to generate
target-aware samples to augment the multi-source training
corpus and re-train a classifier for the target corpus. In the
following subsections, we detail each component and its
corresponding loss function.

3.3.1 The CycleGAN
In this framework, we trained a bi-directional mapping
function between the source and target corpus that con-
tained two generators (GS→T , GT→S) and three corpus
discriminators (DS1 , DS2 , DT ). Here, we use GS→T as an
encoder for the source (Enc S) and a decoder for the target
(Dec T ). The source encoder (Enc S) maps samples from
two different source domains to a common space, and the
target decoder (Dec T ) maps the latent representation to
the target domain. A common cycleGAN was applied as our
base model here, and the standard GAN losses are defined
as:

L(GS→T , DT ) = ET∼Pdata(T )[logDT (T )]

+ ES∼Pdata(S)[log(1−DT (Dec T (Enc S(S)))] (1)

Unlike the normal cycleGAN, the GAN loss for the source
was slightly modified in our framework. As for GT→S , we
used two source decoders (Dec Si) where i corresponds to
the source corpus index. The source GAN loss is defined as:

L(GT→Si
, DSi

) = ESi∼Pdata(Si)[logDSi
(Si)]

+ ET∼Pdata(T )[log(1−DSi(Dec Si(Enc T (T )))] (2)

Therefore, the total GAN loss of our framework was:

LGAN (GT→Si
, GS→T , DSi

, DT ) = L(GT→Si
, DSi

)+

L(GS→T , DT ) (3)

To guarantee the stability of the training process and the
reversibility of the generators, we also considered identity
loss and cycle loss as well during training, and the two
losses are defined as:

Lidentity = ESi∼PSi
[||GT→Si

(Si)− Si||2]
+ ET∼PT

[||GS→T (T )− T ||2] (4)

Lcycle = ESi∼PSi
[||GT→Si

(GS→T (Si))− Si||2]
+ ET∼PT

[||GS→T (GT→Si
(T ))− T ||2] (5)

3.3.2 The Corpus-Aware Attention Mechanism
The original cycleGAN architecture only conducted the one-
to-one mapping between one source and one target dataset.
When training a traditional cycleGAN, a pairing input like
(S1, T ) or (S2, T ) is required. However, to achieve the many-
to-one mapping in the cycleGAN, we introduced a corpus-
aware attention mechanism in this work. While training
our proposed network, the pairing inputs included two
different source samples and one target sample (S1, S2, T );
this combination forms a many-to-one mapping when input
into the corpus-aware attention mechanism. According to
our proposed method, the target samples were treated as
reference points for both source samples, and attend on
either source IEMOCAP or source VAM, whichever is more

similar to the reference target point. First, we defined the
hcat, which is the concatenation of the hidden vector from
generators’ encoder, and the input to the corpus-aware
attention mechanism is as follows:

hsi = Enc S(Si) (6)

htref = Enc T (T ) (7)

hcat = (hs1 ||htref )||(hs2 ||htref )||...||(hsi ||htref ) (8)

hcat ∈ RB×C×2H (9)

where hsi is the hidden vector from Enc S of GS→T , Si

is the sample from source corpus i, and htref is the hidden
vector from paired input of target sample and serves as a
reference point in each batch from Enc T of GT→S . B, C,
and H represent the batch size, source corpus amount, and
hidden dimension size of the encoder respectively.

The corpus-aware attention mechanism contains a di-
mension reduction layer and a trainable parameter, and is
defined as:

s(hcat) = tanh(Linear(hcat)), s(hcat) ∈ RB×AH×C (10)

αS =
exp(vT · s(hcat))∑C
i=1 exp(v

T · s(hcat))
(11)

αS ∈ RB×1×C (12)

where s(·) is a score function for the energy computation,
hcat is the input to the attention mechanism and represents
the concatenation of the hidden vector of hsi and htref ,
and v ∈ R1×AH is the trainable parameter. B, AH , and
C are batch size, attention hidden size and source corpus
size respectively. After computing the attention weights, we
integrated two hidden vectors (hS1 , hS2 ) from S1 and S2 to
synthesize the target samples (Tfake) as:

hstack =

[
h1

h2

]
(13)

hfake = αS · hstack (14)

Tfake = Dec T (hfake) (15)

where hstack is the vertical concatenation of h1 and h2.

3.3.3 Emotion Consistency Constraint

To further strengthen the contribution of the synthetic
target-aware samples to our main emotion recognition task,
we imposed an additional emotion constraint while train-
ing a conventional cycleGAN which is inspired by [25] to
guarantee that the reconstruction of each source sample
preserves the original emotion information and is correctly
classified by the well-trained classifier (pre-augmentation)
on both source corpora. The constraints are defined as:

LEmotion =
∑
i

yi log(Fs(GT→S(GS→T (Si)))) (16)

where i represents the sample index, yi is the corresponding
annotation for instance Si from the source corpus, and Fs is
the emotion classifier trained by all source datasets.
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Therefore, the overall training objective function
LCAEmoCyGAN for our proposed model is defined as,

LCAEmoCyGAN = λ1Lcycle + λ2Lidentity

+ λ3LGAN + λ4Lemotiom (17)

where the λ1, λ2, λ3, and λ4 are the weights of each specific
loss. To further analyze the contribution of each component,
we included the CACyGAN in the experiment. The CACy-
GAN is a special case of the CAEmoCyCAN, in which λ4

is equal to zero, which means that it does not consider the
emotion information reconstruction constraint.

After completing CAEmoCyGAN training, we used it to
generate target-aware samples to augment the source data.
We then use the augmentation corpus to train an emotion
classifier for the target corpus, which was optimized using
cross-entropy loss. The overall procedures of inference pseu-
docode are included in Algorithm 1.

3.4 Target Emotion Classifier
Finally, we aggregated the two sources datasets and the
generated synthetic target data as augmented source data
(S aug) to train an emotion classifier (Fclf ). Using the
target-aware synthetic samples, the emotion classifier could

Algorithm 1: CAEmoCyGAN Augmentation pro-
cedure, m is the batch size
1 The Augmentation Stage

Data: Random duplication up-sampling of S1, S2,
and Target to make sure they could be paired.

Result: Tfake, Yfake

2 n←Max(Number of S1, Number of S2)/m
3 shuffle(S1, S2, Target)
4 for batch = 1, . . . , n do
5 Sample {Si

1}mi=1, a batch from Source1
6 Sample {Si

2}mi=1, a batch from Source2
7 Sample {T i}mi=1, a batch from Target
8 h1, h2 ← Enc S(S1), Enc S(S2)
9 href ← Enc S(T )

10 hcat ← (h1||href )||(h2||href )
11 αS ← Att(hcat) ; ▷ Compute att weights
12 hfake ← αS · hstack ; ▷ Integrate hidden
13 Tfake ← Dec T (hfake)
14 Yfake ← αS · YS

15 end

16 The Target Emotion Classifier Training Stage
Data: Initiate an emotion classifier network (F clf )

with parameters θ, and aggregate the original
source data with synthetic target data.

Result: F clf with θ∗

17 S aug ←Mix(S1, S2, Tfake)
18 n← S aug/m
19 for batch = 1, . . . , n do
20 Sample {Si}mi=1 a batch from Saug

21 Sample {Yi}mi=1 a batch from Yaug

22 Ŷ ← F clf(S)

23 Lossclf ← CrossEntropy(Ŷ , Y )
24 Update θ
25 end

more accurately make predictions about the target corpus
and increase its variability. In the emotion classifier setting,
only the fully connected layers are considered. The common
cross-entropy loss was used as our classification criteria,
where the classifier loss (Lclf ) is defined as:

Lclf =
∑
i

Yi log(Fclf (S augi)) (18)

where Fclf is the final emotion classifier for the target
corpus, index i represents the sample index, and S aug and
Y correspond to the augmented source data and their labels,
respectively.

4 EXPERIMENTAL EVALUATION

In this section, we detail the experimental settings, including
evaluation metrics and normalization methods. We con-
ducted the experiment to evaluate two emotion attributes,
arousal, and valence, each of which is classified into three
classes: low, middle, and high. The following subsections
describe the settings and compare the results with those
from the baseline models.

4.1 Upper Bound Experimental Setup

According to the setup of our cross-corpus experiments,
the upper bound should theoretically correspond to the
performance obtained by training and testing all on the
target corpus. Here, the MSP-Podcast was used as the target
corpus in this work. In the MSP-Podcast, the data are
divided into three partitions given by the original corpus:
training, validation, and test sets. Using the original settings,
we trained a basic DNN feed-forward network with the
training set and applied early stopping to the validation
set followed by inference on the test set. The two emotion
classifier networks were composed of concatenated fully
connected layers, whose parameters were set to [1582, 500,
100, 3] with a learning rate of 1e-3 with Adam optimizer and
a batch size of 128 with 60 epochs.

4.2 Cross-Corpus Experimental Setup

The input features were 1582 dimensions from the Emobase
config in OpenSMILE, and all features were normalized
using the min-max normalization scheme. According to
section 3, we applied the proposed corpus-aware emotional
cycle GAN (CAEmoCyGAN) as our base architecture. The
network included two generators: GS→T , which was based
on fully connected layers and the ReLU activation functions,
and GT→S , in which the encoder mapped the samples
from two different source datasets into a hyperplane that
represented the source domain and the two distinct de-
coders mapped the hidden vector back to the two separate
source corpora. The detailed parameter settings for the two
generators are listed in Table 2. The Adam optimizer and the
batch normalization were applied and the batch size was 256
while training all networks.

Due to the differences in the class distribution between
the two source and the target dataset, we first conducted
random up-sampling to augment each class distribution to
become identical. Before training the CAEmoCyGAN, we
would pre-trained the network with random pairings of
source and target datasets, which meant that each pair were
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TABLE 2: CAEmoCyGAN Parameter Settings

Structure Component Node Parameters LR

GS→T
Enc S [1582, 1000, 500, 256]

2e-5

Dec T [256, 500, 1000, 1582]

GT→S

Enc T [1582, 1000, 500, 256]
Dec S1 [256, 500, 1000, 1582]
Dec S2 [256, 500, 1000, 1582]

Discriminator
D S1 [1582, 1000, 500, 1]
D S2 [1582, 1000, 500, 1]
DT [1582, 1000, 500, 1]

Emotion Classifier Fclf [1582, 500, 100, 3] 2e-4

Corpus-Aware Att hidden size 512 2e-2
attn size 128

organized as [S1, S2, T ]. Inspired by the cycleGAN, we
pre-trained the network over 20 epochs to bi-directionally
map between the source and target samples with L1 loss
criterion; using this strategy, the network begins training at
a stable point rather than using random initial parameters.

To train the main structure, we used three corpus dis-
criminators for source-IEMOCAP, source-VAM and target-
MSP Podcast respectively. The discriminators were com-
posed of a ReLU activation function and multiple fully
connected layers. The corpus-aware attention mechanism
was also applied, with all the parameters listed in Table 2. To
avoid an unstable training process, each component’s learn-
ing rate was different and corresponded to its characteris-
tics. Notice that the experiment was divided into corpus-
aware cycleGAN (CACyGAN) and corpus-aware emotional
cycleGAN (CAEmoCyGAN) depending on whether the
emotion constraint was included. The weights (λ1, λ2, λ3,
λ4) of cycle loss, identity loss, GAN loss and emotion loss
were 10, 10, 1, 10, respectively.

When training the recognition model, we generated
21705 target-aware samples as augmentation data for
arousal and 14607 for valence. The different number of aug-
mented samples is due to the aforementioned up-sampling
schema applied to the source, e.g., when the task is to
recognize arousal, the most prevalent class was middle,
with 7235 samples; thus the samples from the low and high
classes were randomly up-sampled to 7235 as well, and
therefore there were a total of 21705 samples for arousal.
We applied the early stopping strategy by validating on
a development set to search for a suitable stop point. The
stopping metric we used was the UAR performance, which
involved randomly sampling 10% of the synthetic target-
aware samples from the generative model and using the
other 90% for the augmented training set. Notice that in
this work, we conduct an unsupervised cross-corpus SER
task, which means the classification model would be directly
trained on augmented source corpora and then evaluate
on the testing partition of the target corpus. Thus, cross-
validation schemes are not needed in this setting.

4.3 Baseline Models
Here, we used data augmentation as our main method
to mitigate the insufficient data variations in the source
datasets. GAN-based generative models have shown a
promising capacity to generate samples, and many related
algorithms have been proposed recently. In this work, we
included a basic cross-corpus DNN model and various gen-
erative models which contains cycleGAN, CyCADA, Cy-

cleEmotionGAN, and CCEmoGAN as our baseline models
for comparison.

• Cross-corpus DNN
This model represents that all the source samples are
used to train a recognition model and then test on the
target corpus directly. The Cross-corpus DNN model
does not include any adaptation scheme which is
used as the primitive model for comparison.

• Random-Paired Auto-encoder (R-P Auto-encoder)
In the experiment, we also include the auto-encoder-
based model as one of the baseline augmentation
models. To make an auto-encoder as a generative
model, we randomly paired the source and target
sample to form the input pair, e.g., (Si, Tj). In this
way, the auto-encoder model then learns the data dis-
tribution between source and target. In the inference
stage, we randomly pick source samples to generate
fake target samples as a data augmentation method.

• CycleGAN
This method was first proposed in [33], and its pri-
mary concept is to learn a non-linear bi-directional
mapping function between the source and target
corpus. The model has demonstrated successful tar-
get synthesis by considering the distribution of the
source and target corpus simultaneously. It achieves
this goal by unpairing inputs and its unsupervised
training procedure. The generator and discriminator
parameters are the same as those in our proposed
model, to facilitate fair comparison.

• CyCADA
An extension of the traditional cycleGAN, CyCADA
[39] includes the main task loss as an optimization
criterion for the source corpus. Furthermore, an extra
feature discriminator was imposed to distinguish
whether the representation was extracted from the
source or target. By also simultaneously considering
the main task loss, the classifier is effectively trained.
After aggregating the information of main task loss
and domain-invariant feature representation for both
the source and target dataset, the classifier would
also show accurate recognition on the target corpus
directly.

• CycleEmotionGAN
Similar to the CyCADA, the CycleEmotionGAN
[40] strengthens the bi-directional mapping using an
emotion constraint. It also considers the emotional
semantic consistency loss, i.e., it ensures that the
source sample is included in the same class after
reconstruction. The proposed model exhibits out-
standing performance in the cross-corpus SER task.
After training, the generator synthesizes the adapted
samples that can be used for data augmentation.

• CCEmoGAN
Instead of searching for a common space to mitigate
the domain shift issue, the conditional cycle emotion
GAN (CCEmoGAN) [26] was proposed to augment
the training data with synthetic fake target samples
and constrain the synthetic sample with a conditional
one-hot encoded vector, which could effectively com-
pensate for the distribution imbalance in the source
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TABLE 3: Proposed Model Comparison on Target MSP-Podcast

Arousal Valence
IEM2MSP P VAM2MSP P [IEM+VAM]2MSP P IEM2MSP P VAM2MSP P [IEM+VAM]2MSP P

Model Name UA WA UA WA UA WA UA WA UA WA UA WA
Cross-corpus DNN 50.25 46.55 56.92 53.59 53.77 45.41 36.59 22.81 34.83 53.87 42.04 33.82
R-P Auto-encoder 45.89 31.24 58.77 42.32 52.26 35.20 43.28 37.98 38.68 39.74 42.79 38.98
CycleGAN 47.66 40.71 58.51 42.17 52.32 40.09 43.86 33.06 39.13 45.84 43.93 35.59
CCEmoGAN 50.42 34.99 59.98 41.25 51.23 42.01 43.49 27.85 39.20 35.36 43.90 38.38
CyCADA 51.35 41.19 57.22 38.91 54.55 38.10 38.82 21.91 34.26 33.79 43.39 41.49
CyEmoGAN 47.33 45.29 57.62 47.43 53.92 46.60 38.20 25.38 35.14 52.45 41.33 35.75
CAEmoCyGAN - - - - 61.64 51.02 - - - - 44.62 42.31

TABLE 4: Within Corpus Result of Target Dataset

Arousal Valence
UA WA UA WA

MSP Podcast 68.85 57.54 44.52 49.55

training samples. CCEmoGAN demonstrates out-
standing performances when conducting SER across
widely used speech emotion corpora, such as the
IEMOCAP, the CIT, and the MSP-IMPROV. Since
the data augmentation of Type B (from source to
target) fake samples outperforms other models as
well as other types of synthetic samples, in this work,
we focus on comparing the fake samples that were
generated from the source to the target (Type B).

5 EXPERIMENTAL RESULTS AND ANALYSIS

In all our experiments, unweighted average recall (UAR)
was used as the metric for evaluating the performance
of emotion recognition accuracy, and we also present the
weighted accuracy (WA) for reference.

5.1 Upper Bound Experiment Result

Here, we run a simple DNN model within corpus following
the label division settings in [48], and we obtain similar
results. We take this as our upper bound, i.e., training
directly on the target corpus. The results are presented in the
Table 4. We found that the UARs for the MSP-Podcast were
68.85% for arousal and 44.52% for valence. From Table 4,
we observe that the arousal performance overwhelmingly
surpassed that of valence, which reinforces that the valence
recognition is still a challenging task in this target corpus.

Our proposed model achieved 61.64% and 44.62% for
arousal and valence, respectively, on the MSP-Podcast. From
these results, we can see that the valence accuracy is almost
the same as the upper bound, which means that the result of
data augmentation by the proposed CAEmoCyGAN is com-
parable to the scenario of training within the entire dataset.
This demonstrates the effectiveness of our proposed model
and may guarantee improvement not only for valence but
also for the arousal attribute.

5.2 Baseline Comparisons

All of the results from the baseline models and our pro-
posed model are listed in Table 3. Here, we list three

different columns for each emotional attribute: IEMOCAP-
to-TARGET, VAM-to-TARGET and [IEMOCAP+VAM]-to-
TARGET. In the following paragraphs, we compare the
performance in terms of single-source transfer and multi-
source transfer.

5.2.1 Single-Source Transfer
For the Cross-corpus DNN results concerning arousal,
shown in Table 3, the performance on VAM2MSP P is
56.92%, which surpasses the result on IEM2MSP P by 6.67%
in absolutely points. In the Cross-corpus DNN model, the
source corpus was directly used to train without any adap-
tation schema, and this result reveals that the VAM dataset
was much closer to the target in its original form, and
therefore Cross-corpus DNN works better when using the
VAM as a source than to the IEMOCAP. We believe it is
because of the VAM collection scenarios, which include
recordings from TV programs. They are rich in sponta-
neous dialogue, and therefore more similar to the MSP-
Podcast, which includes recordings from online podcasts.
Therefore, similar results were obtained by examining other
single source augmentation methods, and the best result on
VAM2MSP P was achieved by CCEmoGAN, with an UAR
of 59.98%, and the best result on IEM2MSP P was achieved
by CyCADA, with an UAR of 51.35%.

Additionally, we further compared the Cross-corpus
DNN result to the best adaptive augmentation methods for
both scenarios, and the absolute point improvements were
1.10% for IEM2MSP P (CyCADA vs. DNN) and 3.06% for
VAM2MSP P (CCEmoGAN vs. DNN). These results show
that, when the VAM is the source, the models benefit more
from the augmentation methods. We believe the primary
reason for this result is the large difference in the amount
of data between the IEMOCAP and the VAM (the IEMO-
CAP has almost tenfold more Table 1). The relatively large
amount of data in the IEMOCAP dataset provides needed
variability; this is not true of the VAM, even though its
affective characteristics seem to be more similar to the target
corpus, the MSP-Podcast. This phenomenon also shows that
the smaller dataset could benefit much more from aug-
menting with target-aware samples, as they would further
compensate for the lack of diversity and would likely result
in higher performance than those datasets with a larger
amount of data originally, e.g., the IEMOCAP.

For valence, however, in contrast to the arousal results,
both the Cross-corpus DNN model and adaptive augmen-
tation models performed better when using the IEMOCAP
as the source dataset. The Cross-corpus DNN’s UAR was
36.59% on IEM2MSP P and 34.83% on VAM2MSP P. The
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TABLE 5: Ablation Study

Model Name Arousal Valence
Target : MSP-Podcast UA WA UA WA
CycleGAN 52.32 40.09 43.93 35.59
CACyGAN 57.83 45.51 44.33 36.55
CAEmoCyGAN 61.64 51.02 44.62 42.31

UAR of the best adaptive augmentation model was 43.86%
on IEM2MSP P (CycleGAN) and 39.20% on VAM2MSP P
(CCEmoGAN). The lower accuracy implies that recognizing
valence in speech is remains a difficult task. The absolute
improvements were 7.27% for IEM2MSP P and 4.37% for
VAM2MSP P respectively. We hypothesize that this result
may be due to the severe label imbalance issue for the
valence attribute in the VAM corpus, which only contained
10 samples in the high valence, which accounted for only
1.06% of all data (Table 1). Such imbalanced label distri-
bution could dramatically degrade the performance when
conducting SER across corpora. This result also implies that
the distribution and amount of data in each class signif-
icantly affect the impact of data augmentation for single-
source transfer. The above experiments indicate that both
the data amount and the data distribution among each
class are major considerations when training a model for
SER across corpora. The model performance improves only
when both of these factors are properly controlled.

5.2.2 Multi-Source Transfer
For the arousal attribute, after aggregating both source
datasets to train the Cross-corpus DNN model, the
UAR (53.77%) indeed increased when compared with
IEM2MSP P (50.25%), but slightly decreased when com-
pared with VAM2MSP P (56.92%). Apparently, the larger
amount of data in the IEMOCAP dominates the major per-
formance; however, the multi-source training result (Cross-
corpus DNN-53.77%) was still better than the single-transfer
result from IEM2MSP P (CyCADA-51.35%) and gained a
2.42% increase in the UAR in terms of absolute points. These
improvements imply that the VAM dataset increases the
target-relevant emotional speech variability for the IEMO-
CAP dataset and contributes to the unsupervised recogni-
tion model. However, these results are still lower than that
of the VAM itself by using (Cross-corpus DNN-56.92%) due
to the large proportion of the IEMOCAP samples. When
comparing the multi-source results after applying baseline
adaptive augmentation models, the best result was 54.55%
from CyCADA, which is 0.78% higher than that of the Cross-
corpus DNN model, and again shows the superiority of
augmentation methods. Our proposed model, CAEmoCy-
GAN achieved a UAR of 61.64% using multi-source settings
and outperformed all the baseline models. When compared
with the best baseline multi-source result, CAEmoCyGAN
improves by 7.09% when compared to CyCADA. CAEmo-
CyGAN is also superior to all single-source transfer models.

For the valence, the multi-source training Cross-corpus
DNN model showed improved results as arousal, and
achieved a 42.04% UAR, which was 5.45% and 7.21% better
than that on IEM2MSP P and VAM2MSP P, respectively.
One particular observation unique to the valence attribute is
that the Cross-corpus DNN model’s performance was better

TABLE 6: Arousal Recall Result

CAEmoCyGAN CACyGAN
Low Recall 75.38% 72.96%
Mid Recall 37.84% 29.29%
High Recall 71.16% 71.36%
UAR 61.46% 57.87%
WA 51.50% 46.27%

than both single-source transfer Cross-corpus DNN models
on IEM2MSP P and VAM2MSP P. A probable reason for
this result is that the lack of samples in the VAM indeed
hindered the model when making predictions for the more
difficult valence recognition task; however, after combining
both source samples, the VAM dataset provided the target-
relevant valence information and the IEMOCAP guaranteed
a sufficient number of training samples. Regarding contri-
butions by both source datasets, the results of using the
combined dataset are better than those of the single-source
transfer models. Further, under multi-source settings, the
traditional CycleGAN augmentation model yields a better
accuracy at 43.93% UAR, which is 1.89% higher than that
of the Cross-corpus DNN model. Meanwhile, our proposed
CAEmoCyGAN still provides the best performance, with
44.62% UAR when comparing with all the baseline models
and obtains 2.58% improvement in terms of absolute points.

It is worth mentioning that our proposed CAEmoGAN
maintains a high WA while increasing the UAR for both
the arousal and valence attributes, which were 51.02% and
42.31%, respectively. This result implies that the proposed
augmentation model learns the smaller class size categories
better while retaining its high performance for the dominant
class. From the above analysis of both emotion attributes,
the augmentation method mitigates the mismatch between
different sources in both single-source transfer models and
multi-source transfer models. Furthermore, our proposed
model utilizes the characteristics from both sources to gen-
erate the target-aware samples and provides the best results
when compared with other augmentation models, which
did not perform better than the single-source transfer mod-
els.

5.3 Ablation Study

In order to understand the contribution of each component
to our proposed model, we divided them into three parts:
the traditional cycleGAN, the corpus-aware attention mech-
anism, and the additional emotion consistency constraint
loss. We present the ablation study results in Table 5.
When using the MSP-Podcast as the target, the arousal
prediction performance increased by 5.51% and 3.81% with
the additional corpus-aware attention mechanism and the
emotion consistency constraint, respectively. Regarding the
more complex emotion, valence, the performance increased
by 0.39% and 0.29%, respectively.

Therefore, when learning to integrate characteristics
from each source corpus, the synthetic sample augmentation
increased the performance across corpora. When consider-
ing the emotion consistency constraint, which maintains the
emotional information after reconstruction, the performance
further improves while conducting emotion recognition.
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Fig. 2: The t-SNE visualization of the data distribution in arousal when using the MSP-Podcast as the target corpus. The
upper row depicts the overlapping density distribution between CACyGAN and the target corpus among three classes,
and the lower row is between CAEmoCyGAN and the target corpus as well. The dark blue represents a single point, and
the red color represents the high-density area which means a high overlapping region.

5.4 Representation Visualization
In this section, in order to discuss the similarity between
different target-aware samples, we visualized the learned
representation from CAEmoCyGAN, CACyGAN, and the
target to intuitively present the distribution of the target-
aware samples and the true target samples. Here, we sep-
arated both emotion attributes into three classes, resulting
in a total of six classes. The classes can be directly analyzed
by examining the overlapping areas in the distribution in
Fig. 2.

The representation dimension was reduced using the t-
SNE unsupervised algorithm. From Fig. 2, we found that
the overlapping part of the distribution between CAEmo-
CyGAN’s synthetic target-aware samples and the true target
samples for arousal classes is larger than that between
CACyGAN’s synthetic target-aware samples and the true
target samples in all the classes of arousal. Our model’s
better ability to synthesize target-aware samples (for every
emotion class) further guarantees the robust performance of
conducting SER in an unsupervised manner.

We further present the per-class recall rates in TABLE 6.
It is evident that the Mid and the Low class of our CAEmo-
CyGAN improve more compared to CACyGAN, i.e., Low
recall improves 2.42% in absolute points (from 72.96% to
75.38%), and Mid recall improves 8.55% in absolute points
(from 29.29% to 37.84%). However, only the recall for High
slightly drops 0.2% in absolute points. This result indicates
the overlapping of low and middle samples between true
target and CAEmoCyGAN generated samples are more
significant than CACyGAN (see Fig 2).

5.5 Learned Attention Weights Visualization
In this section, we further analyze the learned attention
weights to investigate the attention learned between the
two source datasets and the reference target sample by
visualizing the relationship between them. Due to the high

number of permutations that would result if we considered
all different cases. We first chose four cases sample for vi-
sualization to demonstrate the underlying working mecha-
nism of our corpus-aware attention mechanism. These cases
are included in Fig. 3, and are described below.

• Case I -
The label of the reference target sample is equal to
one of that from the sources’ sample (the IEMOCAP:
high, the VAM: low, the MSP-Podcast: high).

• Case II -
The three samples all come from different classes (the
IEMOCAP: high, the VAM: low, the MSP-Podcast:
middle).

• Case III -
The reference MSP-Podcast (high) differs from the
sources class, but the sources from the IEMOCAP
(low) and the VAM (low) are in the same class.

• Case IV -
All samples come from the same class (high).

Therefore, for Case I, as seen in Fig. 3a, the reference target
MSP-Podcast sample and the IEMOCAP sample belong to
the high class, but the VAM sample belongs to the low
class. In this case, we found that the target-aware sample
integrated using these two source samples is closer to the
IEMOCAP than the VAM, and the combination weights
among the two samples are 0.98 and 0.02, respectively.
This result shows evidence that category alignment is still
needed even when the VAM setting is closer to that of the
target corpus, as its class is too different from the reference
target sample. The category alignment results in attention
weights of 0.98 and 0.02 for the IEMOCAP and the VAM,
respectively.

Case II extends the above case, meaning that we examine
those cases where the emotion category from both sources
and the reference target samples to be different. We would
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Fig. 3: Corpus-aware attention weights analysis among four
different cases. The upward triangle represents the sample
from IEMOCAP, the downward triangle represents the VAM
sample, the rightward triangle represents different ratio
combinations, the blue circle represents the reference target
sample, and the red star represents the learned synthetic
target-aware sample, which was integrated by the corpus-
aware attentions.

TABLE 7: Case-wise Attention Distribution Analysis

Arousal Valence
IEM>0.5 VAM>0.5 IEM>0.5 VAM>0.5

CASE-I-IEM 71.33% 28.67% 62.65% 37.35%
CASE-I-VAM 50.80% 49.20% 41.25% 58.75%
CASE-II 58.27% 41.73% 65.02% 34.98%
CASE-III 61.56% 38.44% 63.30% 36.70%
CASE-IV 64.61% 35.39% 59.06% 40.94%

like to investigate which category from which source is
closer to a specific reference target sample class. In Fig. 3b,
when the three samples all come from different classes, the
reference MSP-Podcast sample is in the middle class; the
IEMOCAP sample is in the high class; the VAM sample is in
the low class. The attention weights from the source samples
are overwhelmingly 0.96 for the IEMOCAP and 0.04 for the
VAM, which may imply that model when referencing on the
middle class of MSP-Podcast leverages more the IEMOCAP
(potentially due to its larger size) than the VAM sample
when forming this synthetic case sample.

In Case III as shown in Fig. 3c, when the reference
MSP-Podcast (high class) differs from the sources’ class, but
the sources from the IEMOCAP (low class) and the VAM
(low class) are both the same class, the weight distributions
are 0.28 for the IEMOCAP and 0.72 for the VAM. Though
the reference targets come from different categories, the
corpus-aware attention mechanism estimates the needed
integration weights. This case may also imply while both
sources are under the same category, the corpus collection
setting plays a crucial role in directing attention.

For Case IV, when all the samples belong to the same

emotion category, each source sample’s property is empha-
sized. In Fig. 3d, all samples from the same category (high
class) and the weight for the IEMOCAP is 0.52 while that
for the VAM is 0.48. The sample from IEMOCAP gained a
little more attention weight and played as a key role during
integration and the sample from the VAM also contributed
significantly to the synthetic sample. These results indicate
to better generate the target-aware samples, fusing different
sources is beneficial.

From the visualization in Fig. 3, we find that the corpus-
aware attention mechanism seems to learn the attention
weights from two sources that are inversely proportional to
the distance from the projection of the target reference point
to the sources. Considering these four cases, the combina-
tion from different emotion categories effectively mitigates
the label distortion between the source and target datasets.

5.5.1 Attention Weights Distribution Analysis
Following the above analysis, we additionally compute
the attention weights distributions (at the corpus level) of
synthetic samples among these four cases for both emotion
dimensions, and the statistics are shown in Table 7. Here, we
separate CASE I into CASE-I-IEM, and CASE-I-VAM which
means the label of the reference target sample is the same as
the samples from the IEMOCAP or the VAM, respectively.
In Table 7, we present quantitative results on how the target
samples rely distinctly on both source corpora for each case.

For example, while focusing on valence in CASE-I, we
find that if the reference target sample is in the same class
of the IEMOCAP, 62.65% of samples would gain more
attention weights on the IEMOCAP which means the combi-
nation attention weights on the IEMOCAP would be greater
than 0.5. On the other hand, if the reference target sample
is in the same class of the VAM, 41.25% of the samples
would have larger attention weights on the VAM, and the
remaining 58.75% would have larger attention weights on
the IEMOCAP.

The same tendency is also observed for the arousal
dimension, and we find that most of the cases are relying
more on the IEMOCAP no matter whether the reference
target emotion is in the same emotion class as the source.
From the results, we see that the target MSP-Podcast dataset
may be more similar to the IEMOCAP than the VAM. The
results are also intuitive pleasing, due to the fact that the
IEMOCAP is a larger dyadic interaction emotion corpus that
contains more useful variability than the VAM. However,
the environment of the MSP-Podcast might be more similar
to VAM which is recorded from TV programs.

However, it is interesting to observe the results of va-
lence from CASE-I-VAM, where the proportion of higher
attention on the VAM (58.75%) surpasses the one in arousal
(49.20%). This phenomenon may imply that the valence of
the VAM is more similar to the MSP Podcast than arousal
due to the higher weights proportion observed (the higher
reliance on the VAM for arousal is 49.20% and the higher
reliance on the VAM for valence is 58.75%). This analysis
provides preliminary insights on the underlying working
mechanism of our corpus-aware attention mechanism and
indicates the differences in the source datasets when learn-
ing to generate target-aware samples. We also observe a
differential effect of our multi-source attention mechanism
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TABLE 8: Model Comparison on Target MSP-IMPROV

Arousal Valence
[IEM+VAM]2MSP I [IEM+VAM]2MSP I

Model Name UA WA UA WA
Cross-corpus DNN 63.51 49.51 48.73 56.02
R-P Auto-encoder 57.24 32.95 47.86 46.91
CycleGAN 64.00 45.87 49.74 47.54
CCEmoGAN 62.10 40.06 48.60 40.89
CyCADA 63.83 45.37 44.52 59.65
CyEmoGAN 61.38 52.83 46.10 42.51
CAEmoCyGAN 65.20 46.04 50.06 46.41

with respect to each emotion dimension (arousal and va-
lence). These insights provide a direction for us to work on
in the future.

5.6 Extending Source/Target Experiments
In this section, we conduct an additional experiment to
examine the scalability and robustness of our proposed
CAEmoCyGAN, by extending the use of our framework
with three extra source corpora and one target corpus.

• Additional Target
The MSP IMPROV [49] is included as our extra
target corpus, which consists of 12 speakers in En-
glish and splits into six sessions. All 8438 utterances
are labeled with arousal, valence, and dominance as
well.

• Additional Source
Here, we include three common speech emotion
corpora to be our extra source corpus, which are the
EMODB [50], the MSP IMPROV, and the CreativeIT
[51], respectively. The EMODB is a German emo-
tional dataset, which contains 535 utterances labeled
in categorical emotions from 10 speakers (five males,
and five females). We map the categorical emotion to
three classes following the rule in [15] and only con-
sider neutrality as the middle class. The CreativeIT is
an English speech emotional database collected from
USC, and all the subjects are encouraged to behave
in goal-oriented affective interactions. All 2163 utter-
ances are annotated with arousal and valence with a
continuous scale ranging from -1 to 1. These corpora
are regularly used in SER tasks.

For the additional target corpus-MSP IMRPOV, the ex-
periment results are shown in Table 8. From Table 8, our
proposed model surpasses other baseline models by 1.2%
absolute points in arousal and 0.32% absolute points in
valence.

Moreover, in order to extend to the multiple source
scenario, besides using the IEMOCAP and the VAM, we in-
clude the third source corpus and present the performances
obtained in Table 9. When using the MSP Podcast as the
target, from Table 9, we find that the arousal is only slightly
bit lower than the two-sources setting, but the results of
our proposed model are still better than other baseline
models under the two-sources setting. Additionally, more
importantly, we find the result of valence recognition, while
generally showing a similar tendency as arousal, the result
of including the MSP IMPROV as the third source helps im-
prove the valence recognition to 46.62% (surpassing 44.62%
under the two-sources setting).

TABLE 9: Experiment for Extra Source Corpus

Arousal Valence
[IEM+VAM]2MSP P [IEM+VAM]2MSP P

Extra Source UAR WA UAR WA
- 61.64 51.02 44.62 42.31
EMODB 56.59 44.34 42.85 43.78
MSP IMRPOV 54.24 46.98 46.62 41.04
CreativeIT 54.22 49.25 42.53 41.18

[IEM+VAM]2MSP I [IEM+VAM]2MSP I
Extra Source UAR WA UAR WA
- 65.20 46.04 50.06 46.41
EMODB 65.34 43.01 50.10 48.25
MSP Podcast 64.84 45.80 50.67 51.63
CreativeIT 64.41 54.29 46.91 48.52

When the target dataset is the MSP IMPROV, the results
of arousal are similar to that of the MSP Podcast. Valence
shows better performance by including the EMODB and
the MSP Podcast. The valence accuracy by including the
EMODB and the MSP Podcast are 50.10% and 50.67% in
UAR, which are all better than CyCAEmoGAN under the
two-sources setting.

From the experiment results, we find that the improve-
ments in the arousal recognition saturate after two sources,
but additional valence performance gains are observed by
including a third source. These experiments demonstrate
the ease of extension in using our proposed CyCAEmoGAN
to handle multiple-sources settings, and the inclusion of
more source datasets seems to be beneficial for cross-corpus
valence recognition.

6 CONCLUSION

In this work, we propose a novel generative architec-
ture that augments data while conducting SER across cor-
pora in a multiple-source scenario. Data augmentation has
been demonstrated to gain advantages from increasing the
amount and variability in the training data for ASR. For
SER, the most common method employed finds the domain-
invariant representation for both the source and target do-
main, though it might be doable for single source and single
target. We observe that the prior state-of-the-art methods
cannot perform well when the corpora are unique and
diverse, as the IEMOCAP and the VAM are. In order to train
the model using all of the unique source datasets we had, we
proposed to utilize the characteristics of each unique corpus
using a corpus-aware attention mechanism to synthesize the
target sample. According to the results, the performance of
data augmentation through our proposed model surpassed
the most recent state-of-the-art methods. To solve the sparse
and contextualized distribution of speech emotion datasets,
data augmentation is an imperative method that compen-
sates for the lack of speech emotion corpora as well as the
high cost of labeled data acquisition.

Since our proposed generative model aims to consider
the uniqueness of each source corpora and learn weights
that facilitate corpus integration, the synthetic samples are
more likely to mimic the target corpus. Using our corpus-
aware attention mechanism, the learned weights fuse the
source samples to represent the target sample, which is
then more flexible than the one-to-one mapping employed
by traditional methods. As our method considers addi-
tional emotional characteristics, the performance is further
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improved. In this paper, we reached competitive cross-
corpus unsupervised emotion recognition performance by
integrating information from the two source datasets and
analyzing the learned weights of each. In the future, we
would like to investigate methods to filter the synthetic
samples instead of using all of them and continuously
focusing on the more challenging valence recognition task.
Further, we will design a more systematic way to integrate
more source corpora, which would lead us to investigate the
explicit relationship between corpus contexts while acoustic
feature similarity is preferred by attention mechanism, i.e.,
scripted/improvisation, on-site/recording, and even lan-
guage preferences.
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